

2011.09.29

HeeSeok Kim, Seokhie Hong, and Jongin Lim Center for Information Security Technologies

Outline

- History of Higher-Order Masking of AES
- Higher-Order Differential Power Analysis & Higher-Order Masking
- Advanced Encryption Standard (AES) S-box & Inversion over a Composite Field
- A Fast Higher-Order Masking of AES S-box
- Performance Analysis & Implementation Results

History of Higher-Order Masking of AES

- Higher-Order masking schemes : Countermeasures to provide the perfect security against higher-order DPA (dth-order masking scheme can block dth-order DPA)
- In 2006, Kai Schramm and Christof Paar proposed the first higher-order masking of AES.
 - They did not prove a security of their masking method : In 2007, it has been broken for the order of 3 or more.
 - It requires much computation time.
- In 2008, provably secure 2nd-order masking method was proposed.
 - It is dedicated to order 2 and also requires much computation time.
- In 2010, provably secure higher-order masking method was proposed.
 - The security for all order was proven.
 - This method can considerably reduce the computation time.
 - But, it is still slow and not practical to use in embedded processors.

- Differential Power Analysis
 - A statistical power analysis of many executions of the same algorithm
 - The power consumption is strongly related to the internal state of the device.

• Masking methods

- Algorithmic techniques : inexpensive and secure against a 1st-order DPA
- A random mask is added to every sensitive variable.
- Instantaneous power leakage is independent of sensitive variables : 1st-order DPA attack feasible

- 2nd-order differential power analysis against masking methods
 - X : sensitive variable, M : random mask
 - $X \oplus M$ (Masked sensitive variable) : processed at t_0
 - M: processed at t_1
 - $P(t_0)$: power consumption at t_0 , $P(t_1)$: power consumption at t_1
 - Correlation between the product of two power signals and hypothetical power $f(X, K_h)$

$$\rho([P(t_0) - E(P(t_0))][P(t_1) - E(P(t_1))], f(X, K_h))$$

- dth-order masking methods
 - randomly split X into (d+1)-tuple ($X_0, X_1, X_2, ..., X_d$) s.t. $X_0 \oplus X_1 \oplus X_2 \oplus ... \oplus X_d = X$
 - X : sensitive variable, $M_1, M_2, ..., M_d$: d random masks
 - $X \oplus M_1 \oplus M_2 \oplus M_3 \oplus \ldots \oplus M_{d-1} \oplus M_d$ (Masked sensitive variable) : processed at t_0
 - M_i 's : processed at t_i
- (d+1)th-order differential power analysis against dth-order masking methods
 - $P(t_i)$: power consumption at t_i
 - Correlation between the product of (d+1) power signals and hypothetical power $f(X, K_h)$

$$\rho(\prod_{i=0}^{d} [P(t_i) - E(P(t_i))], f(X, K_h))$$

- dth-order masking methods
 - randomly split every sensitive variable X of an original cipher into (d+1)-tuple ($X_0, X_1, X_2, ..., X_n$
 - X_d) s.t. $\perp_{i=0}^d X_i = X$ where \perp is any group operation.

	Original cipher	Masked cipher
Encryption algorithm	$c \leftarrow e(m, k)$	$(c_0, c_1, \dots, c_d) \leftarrow e'((m_0, m_1, \dots, m_d), (k_0, k_1, \dots, k_d))$ $(c = \perp_{i=0}^d c_i, m = \perp_{i=0}^d m_i, k = \perp_{i=0}^d k_i)$
Intermediate value	Ι	$(I_0, I_1,, I_d)$ s.t. $I = \perp_{i=0}^d I_i$
Linear operation	$O \leftarrow L(I)$	$(O_0, O_1, \dots, O_d) \leftarrow L'((I_0, I_1, \dots, I_d))$ where $O_i = L(I_i)$ \rightarrow If $\perp = \bigoplus, O = \perp_{i=0}^d O_i = L(\perp_{i=0}^d I_i) = L(I)$
Non-linear operation	$O \leftarrow NL(I)$??

- Higher-order masking scheme of non-linear operation
 - Most of the cost for higher-order masking scheme is required by non-linear operation.
 - In the case of AES, to construct the higher-order masking scheme in all previous works, the most important consideration has been to mask S-box operation.
- Higher-order masking of AES S-box [18]
 - AES S-box is defined by a multiplicative inverse $x^{(-1)}$ and an affine transformation A_f
 - Masking the affine transformation $O \leftarrow A_f(I)$ is easy
 - If *d* is even, the *d*th-order masking of A_f is $(O_0, O_1, \dots, O_d) \leftarrow A_f'((I_0, I_1, \dots, I_d))$ where $O_i = A_f(I_i)$
 - If *d* is odd, the *d*th-order masking of A_f is $(O_0, O_1, ..., O_d) \leftarrow A_f'((I_0, I_1, ..., I_d))$ where $O_0 = A_f(I_0) \oplus 0 \times 63$ and $O_i = A_f(I_i)$ $(i \neq 0)$
 - The d^{th} -order masking of $x^{(-1)}$ is constructed by the <u> d^{th} -order secure exponentiation</u>.

- dth-order secure exponentiation [18] : constructed by dth-order secure square and multiplication
 - dth-order secure square : t squaring is linear operation over \mathbb{F}_{256}

$$X^{2^t} = \bigoplus_{i=0}^d X_i^{2^t}$$

- dth-order secure multiplication : non-linear operation, difficulty to mask
- $(c_0, c_1, \dots, c_d) = \text{SecMult}((a_0, a_1, \dots, a_d), (b_0, b_1, \dots, b_d)) \text{ s.t. } c = \bigoplus_{i=0}^d c_i = \bigoplus_{i=0}^d a_i \bigoplus_{i=0}^d b_i = ab$
- SecMult function requires $(d+1)^2 GF(2^8)$ multiplications
- The addition chain of x^{254} to minimize the number of multiplications :

$$x \xrightarrow{S} x^2 \xrightarrow{M} x^3 \xrightarrow{2S} x^{12} \xrightarrow{M} x^{15} \xrightarrow{4S} x^{240} \xrightarrow{M} x^{252} \xrightarrow{M} x^{254}$$

- The requirement of $4(d+1)^2 GF(2^8)$ multiplications : $\frac{12(d+1)^2}{12(d+1)^2}$ table lookup operations (log/alog tables)

SubBytes of AES & Inversion for SubBytes

• SubBytes of AES

- $S: GF(2^8) \xrightarrow{} GF(2^8)$
- $S(x) = Mx^{(-1)} \oplus v$ where M is an 8x8 GF(2)-matrix, and v is an 8x1 GF(2)-vector.
- $x^{(-1)} = x^{-1}$ in $GF(2^8)$ (except if x = 0 then $x^{(-1)} = 0$)

• Inversion Operation over a Composite Field [21]

- This operation has been proposed to reduce the cost of AES SubBytes.
- Order of Operations
 - Transform an element over $GF(2^8)$ into an element over the composite field having low inversion cost.
 - Compute the inverse of this transformed element over composite field.
 - Carry out the inverse mapping into the element over $GF(2^8)$.

SubBytes of AES & Inversion for SubBytes

• Inversion Operation over a Composite Field [21]

- Main purpose :
 - Now, it is not practical to use higher-order masking schemes in the embedded processors because of their speed.
 - Reduce running time of the higher-order masking scheme
- Idea : use the inversion operation over the composite field and precomputation tables
- 6 precomputation tables (total requirement for 816 bytes of ROM)
 - Squaring table T1 over GF(2⁴)
 - Two squaring table T2 over GF(2⁴)
 - Squaring-scalar multiplication table T3 over GF(2⁴)
 - Multiplication table T4 over GF(2⁴)
 - Isomorphism table T5

12

- Inverse isomorphism-Affine transformation table T6

CHES 2011

Algorithm.
$$d^{\text{th}}$$
-order masking of AES S-box
Input : $(x_0, x_1, ..., x_d)$ s.t. $x = \bigoplus_{i=0}^d x_i$
Output : $(y_0, y_1, ..., y_d)$ s.t. $y = \text{S-box}(x) = \bigoplus_{i=0}^d y_i$
 $1_{(a)}$. $(H_0//L_0, H_1//L_1, ..., H_d//L_d) = (T5[x_0], T5[x_1], ..., T5[x_d])$
 $1_{(b)}$. $(w_0, w_1, ..., w_d) = (T3[H_0], T3[H_1], ..., T3[H_d])$
 $1_{(c)}$. $(t_0, t_1, ..., t_d) = (H_0 \oplus L_0, H_1 \oplus L_1, ..., H_d \oplus L_d)$
2. $(L_0, L_1, ..., L_d) = \text{SecMult4}((t_0, t_1, ..., t_d), (L_0, L_1, ..., L_d))$
3. $(w_0, w_1, ..., w_d) = (w_0 \oplus L_0, w_1 \oplus L_1, ..., w_d \oplus L_d)$
4. $(w_0, w_1, ..., w_d) = \text{SecInv}((w_0, w_1, ..., w_d), (H_0, H_1, ..., H_d))$
5. $(H_0, H_1, ..., H_d) = \text{SecMult4}((w_0, w_1, ..., w_d), (L_0, L_1, ..., L_d))$
7. $(y_0, y_1, ..., y_d) = (T6[H_0//L_0], T6[H_1//L_1], ..., T6[H_d//L_d])$
8. If d is odd, $y_0 = y_0 \oplus 0x63$
9. Return $(y_0, y_1, ..., y_d)$

CHES 2011

- Masking non-linear operations
 - Masking GF(2⁴) inversion (SecInv function)
 - Using the composite field operation over $GF((2^2)^2)$ similarly to the masked operation over $GF(((2^2)^2)^2)$: requires as many table lookup operations as that over $GF(((2^2)^2)^2)$.
 - The addition chain of x^{14} to minimize the number of multiplications :

$$x \xrightarrow{S} x^2 \xrightarrow{M} x^3 \xrightarrow{ZS} x^{12} \xrightarrow{M} x^{14}$$

Algorithm. $GF(2^4)$ SecInv function Input : $(x_0, x_1, ..., x_d)$ s.t. $x = \bigoplus_{i=0}^d x_i$ Output : $(y_0, y_1, ..., y_d)$ s.t. $y = x^{14} = \bigoplus_{i=0}^d y_i$ 1. $(w_0, w_1, ..., w_d) = (T1[x_0], T1[x_1], ..., T1[x_d]) // x^2$ 2. RefreshMasks($(w_0, w_1, ..., w_d)$) // Eliminate the dependence between two input tuples 3. $(z_0, z_1, ..., z_d) =$ SecMult4($(w_0, w_1, ..., w_d)$, $(x_0, x_1, ..., x_d)$) // x^3 4. $(z_0, z_1, ..., z_d) = (T2[z_0], T2[z_1], ..., T2[z_d]) // x^{12}$ 5. $(y_0, y_1, ..., y_d) =$ SecMult4($(z_0, z_1, ..., z_d)$, $(w_0, w_1, ..., w_d)$) // x^{14}

- Masking non-linear operations
 - Masking GF(2⁴) multiplication (SecMult4 function)
 - Using the idea of [18]
 - $(d+1)^2 GF(2^4)$ multiplications : $(d+1)^2$ table lookup operations by T4 table
 - Our higher-order masking of AES S-box needs 5 SecMult4 function calls : <u>5(d+1)² table lookup operations</u>

Performance Analysis

Algorithm.
$$d^{\text{th}}$$
-order masking of AES S-box
Input : $(x_0, x_1, ..., x_d)$ s.t. $x = \bigoplus_{i=0}^{d} x_i$
Output : $(y_0, y_1, ..., y_d)$ s.t. $y = \text{S-box}(x) = \bigoplus_{i=0}^{d} y_i$
 $1_{(a)}$. $(H_0//L_0, H_1//L_1, ..., H_d//L_d) = (T5[x_0], T5[x_1], ..., T5[x_d])$
 $1_{(b)}$. $(w_0, w_1, ..., w_d) = (T3[H_0], T3[H_1], ..., T3[H_d])$
 $1_{(c)}$. $(t_0, t_1, ..., t_d) = (H_0 \oplus L_0, H_1 \oplus L_1, ..., H_d \oplus L_d)$
2. $(L_0, L_1, ..., L_d) = \text{SecMult4}((t_0, t_1, ..., t_d), (L_0, L_1, ..., L_d))$
3. $(w_0, w_1, ..., w_d) = (w_0 \oplus L_0, w_1 \oplus L_1, ..., w_d \oplus L_d)$
4. $(w_0, w_1, ..., w_d) = \text{SecInv}((w_0, w_1, ..., w_d))$
5. $(H_0, H_1, ..., H_d) = \text{SecMult4}((w_0, w_1, ..., w_d), (H_0, H_1, ..., H_d))$
6. $(L_0, L_1, ..., L_d) = \text{SecMult4}((w_0, w_1, ..., w_d), (L_0, L_1, ..., L_d))$
7. $(y_0, y_1, ..., y_d) = (T6[H_0//L_0], T6[H_1//L_1], ..., T6[H_d//L_d])$
8. If d is odd, $y_0 = y_0 \oplus 0x63$
9. Return $(y_0, y_1, ..., y_d)$

- 4-bit shift operation may require
 4 instruction calls unless the
 single instruction carrying out 4bit shift is supported.
- However, some microcontrollers
 like 8051 and AVR family
 support a single SWAP operation,
 which swaps high and low
 nibbles in a register.
- To get the random nibbles, we split 1 random byte into two nibbles.

Performance Analysis

Table 1. Comparison of two d-th order masked S-box schemes in terms of the totalnumber of operations

	Ours	[18]
Table Lookup	$5d^2 + 13d + 8$	$12d^2 + 31d + 19$
XOR	$10d^2 + 16d + 5$	$8d^2 + 12d$
Random Bits	$10d^2 + 14d$	$16d^2 + 32d$
etc	4-bit logical shift : $\frac{5}{4}d^2 + \frac{15}{4}d + 2$,	8-bit Addition : $8(d+1)^2$,
	8-bit bitwise AND : $\frac{5}{4}d^2 + \frac{15}{4}d + 2$	8-bit logical AND : $4(d+1)^2$

- Implementation of [18]

- Using log/alog tables
- Remove the reduction operation modulo 255 : to improve the computation speed
- Remove the conditional branch : to eliminate the possibility of SPA

Implementation Results & Conclusion

Full-round Higher-Order Masking

- AES-128 in C-language for ATmega128 8-bit architecture
- 2.54 (second) and 3.03 (third) faster than [18]

Implementation Results & Conclusion

Reduced Masking

- Reduced Masking : <u>higher-order masking on 1,2,9,10 rounds</u>, <u>first-order masking on KeyExpand and the</u> rest of the rounds : higher-order DPA generally attacks the first and last few rounds
- First-order masking on KeyExpand and the rest of the rounds : the security against the analysis such as
 [8] and [12]
- just 8.6 (second) and 13.8 (third) slower than the straightforward AES
 Korea University
 CHES 2011

